

Quail: A python toolbox for analyzing free recall experiments and plotting the results

[image: _images/plot_lagcrp.png]
[image: _images/plot_fingerprint.png]
Quail [https://github.com/ContextLab/quail] is a library for analyzing and visualizing free recall data
in Python. It is built on top of matplotlib and seaborn. For sample Jupyter
notebooks, click here [https://github.com/ContextLab/quail-example-notebooks]
and to read the paper, click
here [http://joss.theoj.org/papers/3fb5123eb2538e06f6a25ded0a088b73].

Some key features of Quail are:

	A simple data structure for encoding and recall data (eggs).

	A set of functions for analyzing data: accuracy, serial position curves, p(first recall), lag-crp and memory fingerprints!

	Simple API for customizing plot styles.

	Set of powerful tools for importing data, automatically transcribing audio files and more.

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | O
 | P
 | R
 | S

_

 	
 	__init__() (quail.Fingerprint method)

 	(quail.FriedEgg method)

 	(quail.OptimalPresenter method)

A

 	
 	analyze() (in module quail)

 	(quail.Egg method)

C

 	
 	crack() (quail.Egg method)

 	
 	crack_egg() (in module quail)

D

 	
 	decode_speech() (in module quail)

E

 	
 	Egg (class in quail)

F

 	
 	Fingerprint (class in quail)

 	
 	FriedEgg (class in quail)

G

 	
 	get_pres_features() (quail.Egg method)

 	get_pres_items() (quail.Egg method)

 	
 	get_rec_features() (quail.Egg method)

 	get_rec_items() (quail.Egg method)

I

 	
 	info() (quail.Egg method)

L

 	
 	load_egg() (in module quail)

 	
 	load_example_data() (in module quail)

O

 	
 	OptimalPresenter (class in quail)

P

 	
 	plot() (in module quail)

R

 	
 	recmat2egg() (in module quail)

S

 	
 	save() (quail.Egg method)

 	
 	stack_eggs() (in module quail)

API reference

Egg class

	quail.Egg([pres,

 quail.plot

quail.plot

	
quail.plot(results, subjgroup=None, subjname='Subject Group', listgroup=None, listname='List', subjconds=None, listconds=None, plot_type=None, plot_style=None, title=None, legend=True, xlim=None, ylim=None, save_path=None, show=True, ax=None, **kwargs)

	General plot function that groups data by subject/list number and performs analysis.

	Parameters:	
	results : quail.FriedEgg

	Object containing results

	subjgroup : list of strings or ints

	String/int variables indicating how to group over subjects. Must be
the length of the number of subjects

	subjname : string

	Name of the subject grouping variable

	listgroup : list of strings or ints

	String/int variables indicating how to group over list. Must be
the length of the number of lists

	listname : string

	Name of the list grouping variable

	subjconds : list

	List of subject hues (str) to plot

	listconds : list

	List of list hues (str) to plot

	plot_type : string

	Specifies the type of plot. If list (default), the list groupings (listgroup)
will determine the plot grouping. If subject, the subject groupings
(subjgroup) will determine the plot grouping. If split (currenty just
works for accuracy plots), both listgroup and subjgroup will determine
the plot groupings

	plot_style : string

	Specifies the style of the plot. This currently works only for
accuracy and fingerprint plots. The plot style can be bar (default for
accruacy plot), violin (default for fingerprint plots) or swarm.

	title : string

	The title of the plot

	legend : bool

	If true (default), a legend is plotted.

	ylim : list of numbers

	A ymin/max can be specified by a list of the form [ymin, ymax]

	xlim : list of numbers

	A xmin/max can be specified by a list of the form [xmin, xmax]

	save_path : str

	Path to save out figure. Include the file extension, e.g.
save_path=’figure.pdf’

	show : bool

	If False, do not show figure, but still return ax handle (default True).

	ax : Matplotlib.Axes object or None

	A plot object to draw to. If None, a new one is created and returned.

	Returns:	
	ax : matplotlib.Axes.Axis

	An axis handle for the figure

 quail.FriedEgg

quail.FriedEgg

	
class quail.FriedEgg(data=None, analysis=None, list_length=None, n_lists=None, n_subjects=None, position=0, date_created=None)

	Object containing results of a quail analyses

	Attributes:	
	data : List of Pandas.DataFrame

	List of Dataframes containing result of an analysis

	type : str

	The type of analysis (e.g. lag-crp)

Methods

	get_data()
	Return a copy of the data

	save(fname[,

 quail.Egg

quail.Egg

	
class quail.Egg(pres=None, rec=None, features=None, dist_funcs=None, meta=None, subjgroup=None, subjname='Subject', listgroup=None, listname='List', date_created=None, recmat=None, list_length=None)

	Data object for the quail package

An Egg data object contains the data you need to analyze free recall experiments.
This can be a single subject’s data, or a group of subjects. An Egg is comprised of
a number of fields: the pres field contains the words/stimuli presented to the subject.
The rec field contains the words/stimuli recalled by the subject. The feature field
is optional, but may contain a dictionary of features for each stimulus. This
field is necessary to run the fingerprint analyses. Related to the features
is the dist_funcs dictionary (also optional). This dictionary specifies
a set of distance functions required for the fingerprint analyses. Finally,
the meta field is an optional dictionary that contains any details useful for
identifying the egg object

	Parameters:	
	pres : list (subjects) of lists (experiment) of lists (list/block) of strings or dictionaries.

	This is a nested list containing the presented stimuli/stimulus features.
The outer list groups the data into subjects, the middle list groups the
data into experiments and the inner list groups the data into stimuli
presented together in one block (or list). Each item within the list can
be a string representing the stimulus or a dictionary representing the
stimuli and its features. If dictionaries are passed, identify the stimulus
name using the ‘item’ key and a string label. To represent additional
stimulus features, use any text (str) label as the key and a value of the
following types: string, int, float, list, array.

	rec : list (subjects) of lists (experiment) of lists (list/block) of strings or dictionaries.

	This is a nested list containing the recalled stimuli/stimulus features.
The outer list groups the data into subjects, the middle list groups the
data into experiments and the inner list groups the data into stimuli
presented together in one block (or list). Each item within the list can
be a string representing the stimulus or a dictionary representing the
stimuli and its features. If dictionaries are passed, identify the stimulus
name using the ‘item’ key and a string label. To represent additional
stimulus features, use any text (str) label as the key and a value of the
following types: string, int, float, list, array.

	features : list (subjects) of lists (experiment) of lists (list/block) of strings or dictionaries.

	This is DEPRECATED, but left in for legacy support. This is a nested list
containing the stimuli/stimulus features. The outer list groups the data
into subjects, the middle list groups the data into experiments and the
inner list groups the data into stimuli presented together in one block
(or list). Each item within the list should be a dictionary representing
stimulus features. Each dictionary should contain a text (str) label as
the key and a value of the following types: string, int, float, list, array.

	dist_funcs : dict (optional)

	A dictionary of custom distance functions for stimulus features. Each
key should be the name of a feature and each value should be a string
representation of an inline distance function
(e.g. dist_funcs[‘feature_n’] = ‘lambda a, b: abs(a-b)’‘)

	meta : dict (optional)

	Meta data about the study (i.e. version, description, date, etc.) can be saved here.

	subjgroup : list of strings or ints (optional)

	String/int variables indicating how to group over subjects. Must be
the length of the number of subjects

	subjname : string (optional)

	Name of the subject grouping variable. Default is ‘Subject’.

	listgroup : list of strings or ints (optional)

	String/int variables indicating how to group over list. Must be
the length of the number of lists

	listname : string (optional)

	Name of the list grouping variable. Default is ‘List’.

	recmat : list (subjects) of lists (experiment) of lists (list/block) of ints.

	An egg can be optionally created directly from recall matrices. A recall
matrix specifies sequences by listing out there indices in the order they
were recalled (e.g. [4, 2, 1, None, None]).

	list_length : int

	The length of the presented lists. Used to create an egg from a recall
matrix (optional). If list_length is not passed, the length of the
presented lists is assumed to be the length of the first list passed.

	Attributes:	
	pres : Pandas.DataFrame

	A multi-index Pandas DataFrame representing the stimuli presented. The
rows of the dataframe created represent distinct presentation blocks and
the columns represent stimuli presented within a block. Each cell of the
dataframe is a dictionary where the ‘stimulus’ key is a text label of
the stimulus and any other text keys are features of the presented
stimulus. The dataframe index will be a multi-index, where the first
level represents the subject number and the second level represents the
list (or presentation block) number.

	rec : Pandas.DataFrame

	A multi-index Pandas DataFrame representing the stimuli recalled. The
rows of the dataframe created represent distinct presentation blocks and
the columns represent stimuli presented within a block. Each cell of the
dataframe is a dictionary where the ‘stimulus’ key is a text label of
the stimulus and any other text keys are features of the presented
stimulus. The dataframe index will be a multi-index, where the first
level represents the subject number and the second level represents the
list (or presentation block) number.

	n_subjects : int

	Number of subjects in the egg object

	n_lists : int

	Number of lists per subject

	list_length : int

	Number of words in the lists

	date_created : time

	A timestamp when the egg was created

Methods

	analyze([analysis])
	Calls analyze function

	crack([subjects,

 quail.stack_eggs

quail.stack_eggs

	
quail.stack_eggs(eggs, meta='concatenate')

	Takes a list of eggs, stacks them and reindexes the subject number

	Parameters:	
	eggs : list of Egg data objects

	A list of Eggs that you want to combine

	meta : string

	Determines how the meta data of each Egg combines. Default is ‘concatenate’
‘concatenate’ concatenates keys in meta data dictionary shared between eggs, and copies non-overlapping keys
‘separate’ keeps the Eggs’ meta data dictionaries separate, with each as a list index in the stacked meta data

	Returns:	
	new_egg : Egg data object

	A mega egg comprised of the input eggs stacked together

 quail.load_egg

quail.load_egg

	
quail.load_egg(filepath, update=True)

	Loads pickled egg

	Parameters:	
	filepath : str

	Location of pickled egg

	update : bool

	If true, updates egg to latest format

	Returns:	
	egg : Egg data object

	A loaded unpickled egg

 quail.analyze

quail.analyze

	
quail.analyze(egg, subjgroup=None, listgroup=None, subjname='Subject', listname='List', analysis=None, position=0, permute=False, n_perms=1000, parallel=False, match='exact', distance='euclidean', features=None, ts=None)

	General analysis function that groups data by subject/list number and performs analysis.

	Parameters:	
	egg : Egg data object

	The data to be analyzed

	subjgroup : list of strings or ints

	String/int variables indicating how to group over subjects. Must be
the length of the number of subjects

	subjname : string

	Name of the subject grouping variable

	listgroup : list of strings or ints

	String/int variables indicating how to group over list. Must be
the length of the number of lists

	listname : string

	Name of the list grouping variable

	analysis : string

	This is the analysis you want to run. Can be accuracy, spc, pfr,
temporal or fingerprint

	position : int

	Optional argument for pnr analysis. Defines encoding position of item
to run pnr. Default is 0, and it is zero indexed

	permute : bool

	Optional argument for fingerprint/temporal cluster analyses. Determines
whether to correct clustering scores by shuffling recall order for each list
to create a distribution of clustering scores (for each feature). The
“corrected” clustering score is the proportion of clustering scores in
that random distribution that were lower than the clustering score for
the observed recall sequence. Default is False.

	n_perms : int

	Optional argument for fingerprint/temporal cluster analyses. Number of
permutations to run for “corrected” clustering scores. Default is 1000 (
per recall list).

	parallel : bool

	Option to use multiprocessing (this can help speed up the permutations
tests in the clustering calculations)

	match : str (exact, best or smooth)

	Matching approach to compute recall matrix. If exact, the presented and
recalled items must be identical (default). If best, the recalled item
that is most similar to the presented items will be selected. If smooth,
a weighted average of all presented items will be used, where the
weights are derived from the similarity between the recalled item and
each presented item.

	distance : str

	The distance function used to compare presented and recalled items.
Applies only to ‘best’ and ‘smooth’ matching approaches. Can be any
distance function supported by numpy.spatial.distance.cdist.

	Returns:	
	result : quail.FriedEgg

	Class instance containing the analysis results

 quail.Fingerprint

quail.Fingerprint

	
class quail.Fingerprint(init=None, features='all', state=None, n=0, permute=False, nperms=1000, parallel=False)

	Class for the memory fingerprint

A memory fingerprint can be defined as a subject’s tendency to cluster their
recall responses with respect to more than one stimulus feature dimensions.
What is a ‘stimulus feature dimension’ you ask? It is simply an attribute of
the stimulus, such as its color, category, spatial location etc.

	Parameters:	
	init : quail.Egg

	Data to initialize the fingerprint instance

	features : list

	Features to consider for fingerprint analyses, defaults to all.

	state : np.array

	The current fingerprint (an array of real numbers between 0 and 1,
inclusive) initialized to all 0.5

	n : int

	a counter specifying how many lists went into estimating the current
fingerprint (initialize to 0)

	permute : bool

	A boolean flag specifying whether to use permutations to compute the
fingerprint (default: True)

	dist_funcs : dict (optional)

	A dictionary of custom distance functions for stimulus features. Each
key should be the name of a feature
and each value should be an inline distance function
(e.g. dist_funcs[‘feature_n’] = lambda a, b: abs(a-b))

	meta : dict (optional)

	Meta data about the study (i.e. version, description, date, etc.) can be
saved here.

Methods

	update(egg[,

 How to use the Quail package

How to use the Quail package

The Egg data object

	The Egg data object
	Load in the library

	The pres data structure

	The rec data structure

	Multisubject eggs

	Adding features to the egg

	Defining custom distance functions for the stimulus feature dimensions

	Adding meta data to an egg

	Adding listgroup and subjgroup to an egg

	Saving an egg

	Stacking eggs

	Cracking eggs

Basic analysis and plotting

	Basic analyzing and plotting
	Recall Accuracy

	Serial Position Curve

	Probability of First Recall

	Lag-CRP

	Temporal clustering

	Memory Fingerprint

More advanced plotting

	Advanced plotting
	Accuracy

	Memory fingerprints

	Other analyses

Setting up speech decoding

	Automated Speech Decoding

	Setting up ffmpeg
	On a mac:

	Setting up the Google Speech API
	Super-user tip:

What is a “memory fingerprint”?

	Computing a memory fingerprint

 quail.decode_speech

quail.decode_speech

	
quail.decode_speech(path, keypath=None, save=False, speech_context=None, sample_rate=44100, max_alternatives=1, language_code='en-US', enable_word_time_offsets=True, return_raw=False)

	Decode speech for a file or folder and return results

This function wraps the Google Speech API and ffmpeg to decode speech for
free recall experiments. Note: in order for this to work, you must have a
Google Speech account, a google speech credentials file referenced in your
_bash_profile, and ffmpeg installed on your computer. See our readthedocs
for more information on how to set this up:
http://cdl-quail.readthedocs.io/en/latest/.

	Parameters:	
	path : str

	Path to a wav file, or a folder of wav files.

	keypath : str

	Google Cloud Speech API key filepath. This is a JSON file containing
credentials that was generated when creating a service account key.
If None, assumes you have a local key that is set with an environmental
variable. See the speech decoding tutorial for details.

	save : boolean

	False by default, but if set to true, will save a pickle with the results
object from google speech, and a text file with the decoded words.

	speech_context : list of str

	This allows you to give some context to the speech decoding algorithm.
For example, this could be the words studied on a given list, or all
words in an experiment.

	sample_rate : float

	The sample rate of your audio files (default is 44100).

	max_alternatives : int

	You can specify the speech decoding to return multiple guesses to the
decoding. This will be saved in the results object (default is 1).

	language_code : str

	Decoding language code. Default is en-US. See here for more details:
https://cloud.google.com/speech/docs/languages

	enable_word_time_offsets : bool

	Returns timing information s(onsets/offsets) for each word (default is
True).

	return_raw : boolean

	Intead of returning the parsed results objects (i.e. the words), you can
return the raw reponse object. This has more details about the decoding,
such as confidence.

	Returns:	
	words : list of str, or list of lists of str

	The results of the speech decoding. This will be a list if only one file
is input, or a list of lists if more than one file is decoded.

	raw : google speech object, or list of objects

	You can optionally return the google speech object instead of the parsed
results by using the return_raw flag.

 quail.recmat2egg

quail.recmat2egg

	
quail.recmat2egg(recmat, list_length=None)

	Creates egg data object from zero-indexed recall matrix

	Parameters:	
	recmat : list of lists (subs) of lists (encoding lists) of ints or 2D numpy array

	recall matrix representing serial positions of freely recalled words e.g. [[[16, 15, 0, 2, 3, None, None...], [16, 4, 5, 6, 1, None, None...]]]

	list_length : int

	The length of each list (e.g. 16)

	Returns:	
	egg : Egg data object

	egg data object computed from the recall matrix

 quail.crack_egg

quail.crack_egg

	
quail.crack_egg(egg, subjects=None, lists=None)

	Takes an egg and returns a subset of the subjects or lists

	Parameters:	
	egg : Egg data object

	Egg that you want to crack

	subjects : list

	List of subject idxs

	lists : list

	List of lists idxs

	Returns:	
	new_egg : Egg data object

	A sliced egg, good on a salad

 quail.OptimalPresenter

quail.OptimalPresenter

	
class quail.OptimalPresenter(strategy='random', features=None, params=None, fingerprint=None)

	A class that reorders stimuli to optimize memory performance

A memory fingerprint can be defined as a subject’s tendency to cluster their
recall responses with respect to more than one stimulus feature dimensions.
What is a ‘stimulus feature dimension’ you ask? It is simply an attribute of
the stimulus, such as its color, category, spatial location etc.

	Parameters:	
	init : quail.Egg

	Data to initialize the fingerprint instance

	features : list

	Features to consider for fingerprint analyses, defaults to all.

	state : np.array

	The current fingerprint (an array of real numbers between 0 and 1,
inclusive) initialized to all 0.5

	n : int

	a counter specifying how many lists went into estimating the current
fingerprint (initialize to 0)

	permute : bool

	A boolean flag specifying whether to use permutations to compute the
fingerprint (default: True)

	dist_funcs : dict (optional)

	A dictionary of custom distance functions for stimulus features. Each
key should be the name of a feature
and each value should be an inline distance function
(e.g. dist_funcs[‘feature_n’] = lambda a, b: abs(a-b))

	meta : dict (optional)

	Meta data about the study (i.e. version, description, date, etc.) can be
saved here.

Methods

	get_params(name)
	Sets a parameter to a particular value

	order(egg[,

 quail.load_example_data

quail.load_example_data

	
quail.load_example_data(dataset='automatic')

	Loads example data

The automatic and manual example data are eggs containing 30 subjects who completed a free
recall experiment as described here: https://psyarxiv.com/psh48/. The subjects
studied 8 lists of 16 words each and then performed a free recall test.

The naturalistic example data is is an egg containing 17 subjects who viewed and verbally
recounted an episode of the BBC series Sherlock, as described here:
https://www.nature.com/articles/nn.4450. We fit a topic model to hand-annotated
text-descriptions of scenes from the video and used the model to transform both the
scene descriptions and manual transcriptions of each subject’s verbal recall. We then
used a Hidden Markov Model to segment the video model and the recall models, by subject,
into k events.

	Parameters:	
	dataset : str

	The dataset to load. Can be ‘automatic’, ‘manual’, or ‘naturalistic’. The free recall
audio recordings for the ‘automatic’ dataset was transcribed by Google
Cloud Speech and the ‘manual’ dataset was transcribed by humans. The ‘naturalistic’
dataset was transcribed by humans and transformed as described above.

	Returns:	
	data : quail.Egg

	Example data

 Plot memory fingerprint

Note

Click here to download the full example code

Plot memory fingerprint

This example plots a fingerprint. Briefly, a fingerprint
can be described as a summary of how a subject organizes information with
respect to the multiple features of the stimuli. In addition to presentation
and recall data, a features object is passed to the Egg class. It is comprised
of a dictionary for each presented stimulus that contains feature dimensions and
values for each stimulus.

[image: ../_images/sphx_glr_plot_fingerprint_001.png]
Code source: Andrew Heusser
License: MIT

#import
import quail

#load data
egg = quail.load('example')

analyze and plot
fegg = egg.analyze('fingerprint', listgroup=['average']*8, features=['temporal'])

fegg.plot(title='Memory Fingerprint')

Total running time of the script: (0 minutes 20.454 seconds)

Download Python source code: plot_fingerprint.py

Download Jupyter notebook: plot_fingerprint.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

 Plot serial position curve

Note

Click here to download the full example code

Plot serial position curve

This example plots the probability of recall success as a function of serial
position during stimulus encoding.

[image: ../_images/sphx_glr_plot_spc_001.png]
Code source: Andrew Heusser
License: MIT

import
import quail

#load data
egg = quail.load('example')

analyze and plot
fegg = egg.analyze('spc', listgroup=['average']*8)

fegg.plot(title='Serial Position Curve')

Total running time of the script: (0 minutes 12.882 seconds)

Download Python source code: plot_spc.py

Download Jupyter notebook: plot_spc.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

 Gallery of Examples

Gallery of Examples

[image: ../_images/sphx_glr_crack_egg_thumb.png]
Crack Egg

[image: ../_images/sphx_glr_recmat2egg_thumb.png]
Make egg out of recall matrix

[image: ../_images/sphx_glr_plot_lagcrp_thumb.png]
Plot Lag-CRP

[image: ../_images/sphx_glr_plot_spc_thumb.png]
Plot serial position curve

[image: ../_images/sphx_glr_plot_pfr_thumb.png]
Plot probability of first recall

[image: ../_images/sphx_glr_plot_temporal_thumb.png]
Plot temporal clustering

[image: ../_images/sphx_glr_plot_fingerprint_thumb.png]
Plot memory fingerprint

[image: ../_images/sphx_glr_plot_pnr_thumb.png]
Plot probability of nth recall

[image: ../_images/sphx_glr_plot_accuracy_thumb.png]
Plot free recall accuracy

[image: ../_images/sphx_glr_decode_speech_thumb.png]
Decode speech

[image: ../_images/sphx_glr_plot_existing_axes_thumb.png]
Plot free recall accuracy in an existing ax object

[image: ../_images/sphx_glr_create_multisubject_egg_thumb.png]
Create a multisubject egg

[image: ../_images/sphx_glr_create_egg_thumb.png]
Create an egg

[image: ../_images/sphx_glr_fingerprint_optimalpresenter_thumb.png]
Optimal presenter

Download all examples in Python source code: auto_examples_python.zip

Download all examples in Jupyter notebooks: auto_examples_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

 Plot temporal clustering

Note

Click here to download the full example code

Plot temporal clustering

This example plots temporal clustering, the extent to which subject tend to
recall neighboring items sequentially.

[image: ../_images/sphx_glr_plot_temporal_001.png]
Code source: Andrew Heusser
License: MIT

import
import quail

#load data
egg = quail.load('example')

#analyze and plot
fegg = egg.analyze('temporal', listgroup=['early']*4+['late']*4)

fegg.plot(title='Temporal Clustering')

Total running time of the script: (0 minutes 21.276 seconds)

Download Python source code: plot_temporal.py

Download Jupyter notebook: plot_temporal.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

 Plot probability of first recall

Note

Click here to download the full example code

Plot probability of first recall

This example plots the probability of an item being recalled first given its
list position.

[image: ../_images/sphx_glr_plot_pfr_001.png]
Code source: Andrew Heusser
License: MIT

import
import quail

#load data
egg = quail.load('example')

analyze and plot
fegg = egg.analyze('pfr', listgroup=['average']*8)

fegg.plot(title='Probability of First Recall')

Total running time of the script: (0 minutes 12.532 seconds)

Download Python source code: plot_pfr.py

Download Jupyter notebook: plot_pfr.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

 Optimal presenter

Note

Click here to download the full example code

Optimal presenter

An example of how to reorder stimuli with the optimal presenter class

Code source: Andrew Heusser
License: MIT

import numpy as np
import quail
from quail import Fingerprint, OptimalPresenter

generate some fake data
next_presented = [{
 'item' : 'CAT',
 'category' : 'animal',
 'size' : 'bigger',
 'starting letter' : 'C',
 'length' : 3
 },
 {
 'item' : 'DOG',
 'category' : 'animal',
 'size' : 'bigger',
 'starting letter' : 'D',
 'length' : 3
 },
 {
 'item' : 'SHOE',
 'category' : 'object',
 'size' : 'smaller',
 'starting letter' : 'S',
 'length' : 4
 },
 {
 'item' : 'BAT',
 'category' : 'animal',
 'size' : 'bigger',
 'starting letter' : 'B',
 'length' : 3
 }]

next_recalled = [{
 'item' : 'DOG',
 'category' : 'animal',
 'size' : 'bigger',
 'starting letter' : 'D',
 'length' : 3
 },
 {
 'item' : 'CAT',
 'category' : 'animal',
 'size' : 'bigger',
 'starting letter' : 'C',
 'length' : 3
 },
 {
 'item' : 'BAT',
 'category' : 'animal',
 'size' : 'bigger',
 'starting letter' : 'B',
 'length' : 3
 },
 {
 'item' : 'SHOE',
 'category' : 'object',
 'size' : 'smaller',
 'starting letter' : 'S',
 'length' : 4
 }
]

egg = quail.Egg(pres=[next_presented], rec=[next_recalled])

initialize fingerprint
fingerprint = Fingerprint(init=egg)

initialize presenter
params = {
 'fingerprint' : fingerprint}
presenter = OptimalPresenter(params=params, strategy='stabilize')

update the fingerprint
fingerprint.update(egg)

reorder next list
reordered_egg = presenter.order(egg, method='permute', nperms=100)

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: fingerprint_optimalpresenter.py

Download Jupyter notebook: fingerprint_optimalpresenter.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

 Decode speech

Note

Click here to download the full example code

Decode speech

This example plots free recall accuracy for a single subject.

Code source: Andrew Heusser
License: MIT

#import
import quail

decode speech
recall_data = quail.decode_speech('../data/sample.wav', save=True,
 speech_context=['DONKEY', 'PETUNIA'],
 keypath='path/to/key.json')

print results
print(recall_data)

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: decode_speech.py

Download Jupyter notebook: decode_speech.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

 Make egg out of recall matrix

Note

Click here to download the full example code

Make egg out of recall matrix

This example shows how to make an egg out of a precomputed recall matrix so that
the analysis and plotting functions can be used.

Code source: Andrew Heusser
License: MIT

import
import quail

create fake recall matrix
recmat = [[[5,4,3,0,1], [3,1,2,0]]]

create egg
egg = quail.recmat2egg(recmat, list_length=6)

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: recmat2egg.py

Download Jupyter notebook: recmat2egg.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

 Plot free recall accuracy in an existing ax object

Note

Click here to download the full example code

Plot free recall accuracy in an existing ax object

This example plots free recall accuracy in an existing Matplotlib Axes object.

[image: ../_images/sphx_glr_plot_existing_axes_001.png]
Code source: Andrew Heusser
License: MIT

#import
import quail
import matplotlib.pyplot as plt

#load data
egg = quail.load('example')

#analysis
fegg = egg.analyze('accuracy', listgroup=['condition1']*4+['condition2']*4)

#plot by list
fig = plt.figure()
ax = fig.add_subplot(2,1,1)
fegg.plot(plot_style='violin', title='Average Recall Accuracy', ax=ax)

Total running time of the script: (0 minutes 14.257 seconds)

Download Python source code: plot_existing_axes.py

Download Jupyter notebook: plot_existing_axes.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

 Plot temporal clustering

Plot temporal clustering

This example plots temporal clustering, the extent to which subject tend to
recall neighboring items sequentially.

[image: ../_images/sphx_glr_plot_tempclust_001.png]
Code source: Andrew Heusser
License: MIT

import
import quail

#load data
egg = quail.load_example_data()

#analysis
analyzed_data = quail.analyze(egg, analysis='temporal', listgroup=['early']*8+['late']*8)

#plot
quail.plot(analyzed_data, title='Temporal Clustering')

Total running time of the script: (0 minutes 0.684 seconds)

Download Python source code: plot_tempclust.py

Download Jupyter notebook: plot_tempclust.ipynb

Generated by Sphinx-Gallery [http://sphinx-gallery.readthedocs.io]

 Plot probability of nth recall

Note

Click here to download the full example code

Plot probability of nth recall

This example plots the probability of an item being recalled nth given its
list position.

[image: ../_images/sphx_glr_plot_pnr_001.png]
Code source: Andrew Heusser
License: MIT

import
import quail

#load data
egg = quail.load('example')

analyze and plot
fegg = egg.analyze('pnr', listgroup=['average']*8,
 position=5)

fegg.plot(title='Probability of Recall')

Total running time of the script: (0 minutes 12.598 seconds)

Download Python source code: plot_pnr.py

Download Jupyter notebook: plot_pnr.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

 Plot free recall accuracy

Note

Click here to download the full example code

Plot free recall accuracy

This example plots free recall accuracy for a single subject.

[image: ../_images/sphx_glr_plot_accuracy_001.png]
Code source: Andrew Heusser
License: MIT

#import
import quail

#load data
egg = quail.load('example')

#analysis
fegg = egg.analyze('accuracy', listgroup=['condition1']*4+['condition2']*4)

#plot by list
fegg.plot(plot_style='violin', title='Average Recall Accuracy')

Total running time of the script: (0 minutes 14.975 seconds)

Download Python source code: plot_accuracy.py

Download Jupyter notebook: plot_accuracy.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

 Plot Lag-CRP

Note

Click here to download the full example code

Plot Lag-CRP

This example plots a Lag-CRP as described in Kahana et al (1996).
Given the recall of a stimulus in position n, this plot shows the probability of
recalling stimuli in neighboring stimulus positions (n+/-5).

[image: ../_images/sphx_glr_plot_lagcrp_001.png]
Code source: Andrew Heusser
License: MIT

import
import quail

load data
egg = quail.load('example')

analyze and plot
fegg = egg.analyze('lagcrp', listgroup=['average']*8)

fegg.plot(title='Lag-CRP')

Total running time of the script: (0 minutes 15.188 seconds)

Download Python source code: plot_lagcrp.py

Download Jupyter notebook: plot_lagcrp.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

 Create an egg

Note

Click here to download the full example code

Create an egg

An egg is made up of two primary pieces of data: pres, which are the
words/stimuli that were presented to a subject and rec, which are the
words/stimuli that were recalled by the subject.

Code source: Andrew Heusser
License: MIT

import quail

generate some fake data
presented = [{
 'item' : 'CAT',
 'category' : 'animal',
 'size' : 'bigger',
 'starting letter' : 'C',
 'length' : 3
 },
 {
 'item' : 'DOG',
 'category' : 'animal',
 'size' : 'bigger',
 'starting letter' : 'D',
 'length' : 3
 },
 {
 'item' : 'SHOE',
 'category' : 'object',
 'size' : 'smaller',
 'starting letter' : 'S',
 'length' : 4
 },
 {
 'item' : 'HORSE',
 'category' : 'animal',
 'size' : 'bigger',
 'starting letter' : 'H',
 'length' : 5
 }
]

recalled = [{
 'item' : 'HORSE',
 'category' : 'animal',
 'size' : 'bigger',
 'starting letter' : 'H',
 'length' : 5
 },
 {
 'item' : 'DOG',
 'category' : 'animal',
 'size' : 'bigger',
 'starting letter' : 'D',
 'length' : 3
 },
 {
 'item' : 'CAT',
 'category' : 'animal',
 'size' : 'bigger',
 'starting letter' : 'C',
 'length' : 3
 }
]

set some custom distance functions
dist_funcs = {
 'category' : 'lambda a, b: int(a!=b)',
 'size' : 'lambda a, b: int(a!=b)',
 'starting letter' : 'lambda a, b: int(a!=b)',
 'length' : 'lambda a, b: np.linalg.norm(np.subtract(a,b))'
}

egg = quail.Egg(pres=[presented], rec=[recalled], dist_funcs=dist_funcs)

fegg = egg.analyze('lagcrp')

fegg.plot()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: create_egg.py

Download Jupyter notebook: create_egg.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

 Create a multisubject egg

Note

Click here to download the full example code

Create a multisubject egg

An egg is made up of two primary pieces of data: pres, which are the
words/stimuli that were presented to a subject and rec, which are the
words/stimuli that were recalled by the subject.

Code source: Andrew Heusser
License: MIT

import quail
import numpy as np

presented words
presented_words = [[['cat', 'bat', 'hat', 'goat'],['zoo', 'animal', 'zebra', 'horse']],[['cat', 'bat', 'hat', 'goat'],['zoo', 'animal', 'zebra', 'horse']]]

recalled words
recalled_words = [[['bat', 'cat', 'goat', 'hat'],['animal', 'horse', 'zoo']],[['bat', 'cat', 'goat'],['animal', 'horse']]]

create egg
egg = quail.Egg(pres=presented_words, rec=recalled_words)

analyze and plot
fegg = egg.analyze('accuracy')

fegg.plot(plot_style='violin', title='Average Recall Accuracy')

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: create_multisubject_egg.py

Download Jupyter notebook: create_multisubject_egg.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

 Crack Egg

Note

Click here to download the full example code

Crack Egg

This an example of how to crack an egg (take a slice of subjects/lists from it)

Code source: Andrew Heusser
License: MIT

#import
import quail

#load data
egg = quail.load('example')

#crack egg
cracked_egg = egg.crack(subjects=[0], lists=[0])

cracked_egg.info()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: crack_egg.py

Download Jupyter notebook: crack_egg.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

 Computing a memory fingerprint

Computing a memory fingerprint

A memory fingerprint can be defined as a subject’s tendency to cluster
their recall responses with respect to more than one stimulus feature
dimensions. What is a “stimulus feature dimension” you ask? It is simply
an attribute of the stimulus, such as its color, category, spatial
location etc. Let’s walkthrough an example to gain a better intuition.

Let’s imagine you were running a free recall experiment where subjects
were presented with lists of words that varied randomly over a number of
distinct dimensions:

In the figure above, the first word (dog) is: green in color, an animal,
starts with the letter ‘d’, is large (bigger than a shoebox) and is
positioned left-center on the screen. The next word (cat) is similar
along some dimensions, but different along others. For instance, cat and
dog are both animals, but the words are presented in different colors,
occupy different parts of the computer screen, etc. More generally, each
word on this list is similar to others words along some dimensions, but
different along other dimensions. Let’s imagine a subject started
recalling the list as follows:

In this recall sequence, “dog” was recalled, followed by “cat”. For each
recall transition, we can compute the similarity between the two stimuli
along each feature dimension. For example, both words are in the animal
category, so their similarity along that feature dimension would be
high. In the color dimension, green (dog) and blue (cat) are somewhat
similar colors, so these words are somewhat similar along this
dimension. The figure below illustrates how we compute a “clustering
score” for a given recall transition and feature dimension:

For each recall transition and feature dimension (color in this
example), we:

	Compute the similarity between the first word of the recall
transition pair and all other words that the subject could have
transitioned to

	Sort these similarity scores from lowest to highest

	Find the position of the second word of the recall transition pair

	Divide this by the number of possible transitions to derive a
“percentile rank”

This analysis is performed to each recall transition and feature
dimension for a given list, and then the percentile ranks are averaged
within feature to get a “memory fingerprint” for each list:

 <no title>

In [1]:

import numpy as np
import quail
from quail import Fingerprint, OptimalPresenter
import seaborn as sns
from scipy.spatial.distance import cdist
import pandas as pd

In [2]:

nperms=100
dist_stick = []
dist_beststick = []
dist_perm = []
dist_permde = []
dist_rand = []
dist_bestchoice = []

for iperm in range(nperms):

presenter.strategy = 'stabilize'

random
shuffled_egg = presenter.order(egg, strategy='random')
weights_rand = quail.analyze(shuffled_egg, analysis='fingerprint')
dist_rand.append(cdist(weights_rand, weights)[0])

reorder next list using stick breaking
resorted_egg = presenter.order(shuffled_egg, method='stick')
weights_stick = quail.analyze(resorted_egg, analysis='fingerprint')
dist_stick.append(cdist(weights_stick, weights)[0])

reorder next list using stick breaking
resorted_egg = presenter.order(shuffled_egg, method='best_stick', nperms=10000)
weights_stick = quail.analyze(resorted_egg, analysis='fingerprint')
dist_beststick.append(cdist(weights_stick, weights)[0])

reorder next list using permutation
resorted_egg = presenter.order(shuffled_egg, method='permute', nperms=10000)
weights_perm = quail.analyze(resorted_egg, analysis='fingerprint')
dist_perm.append(cdist(weights_perm, weights))

presenter.strategy = 'destabilize'

reorder next list using permutation
resorted_egg = presenter.order(shuffled_egg, method='permute', nperms=10000)
weights_permde = quail.analyze(resorted_egg, analysis='fingerprint')
dist_permde.append(cdist(weights_permde, weights))

reorder next list using permutation
resorted_egg = presenter.order(shuffled_egg, method='best_choice', nperms=100)
weights_choice = quail.analyze(resorted_egg, analysis='fingerprint')
dist_bestchoice.append(cdist(weights_choice, weights)[0])

if iperm % 10 == 0:
print(iperm)

In [3]:

sns.distplot(dist_stick, label='stick')
sns.distplot(dist_beststick, label='best stick')
sns.distplot(dist_bestchoice, label='best choice')
sns.distplot(dist_perm, label='permute:stabilize')
sns.distplot(dist_permde, label='permute:destabilize')
sns.distplot(dist_rand, label='random')
sns.plt.legend()
sns.plt.show()

In [4]:

def loadstim():
 """Loads in the stimuli from disk and creates an egg"""

 def shuffle_stim(wordpool, nlists=16, nwords=16):
 """Randomizes the stimuli"""
 np.random.seed()
 return pd.concat([wp[wp['GROUP']==choice].sample(nwords, replace=False).reset_index(drop=True) for choice in np.random.choice(wp['GROUP'].unique(), nlists, replace=False)])

 def add_features(wp):
 """Adds features to the stimuli"""

 # first letter
 wp['FIRST LETTER'] = wp['WORD'].apply(lambda x: x[0])

 # word length
 wp['WORD LENGTH'] = wp['WORD'].apply(lambda x: len(x))

 # color
 wp['COLOR'] = [[int(np.random.rand() * 255) for i in range(3)] for i in range(wp.shape[0])]

 # location
 wp['LOCATION'] = [[np.random.rand() * 85, np.random.rand() * (100 - wp['WORD LENGTH'].iloc[i] * 3)] for i in range(wp.shape[0])]

 return wp

 def df2egg(df):
 """Converts a dataframe to an egg"""
 group = df['GROUP'].unique()
 pres = [df[df['GROUP']==i]['WORD'].values.tolist() for i in group]
 rec = [[None] for i in group]
 features = [format_features(df[df['GROUP']==i]) for i in group]
 return quail.Egg(pres=[pres], rec=[rec], features=[features])

 def format_features(wp):
 """Formats the features"""
 trials=[]
 for idx, row in wp.iterrows():
 trial = {
 'length' : row['WORD LENGTH'],
 'size' : row['SIZE'],
 'category' : row['CATEGORY'],
 'pos' : row['LOCATION'],
 'color' : row['COLOR'],
 'first_letter' : row['WORD'][0]
 }
 trials.append(trial)
 return trials

 # load wordpool
 wp = pd.read_csv('/Users/andyheusser/Documents/github/adaptiveFR/exp/static/files/cut_wordpool.csv')

 # shuffle the lists and stim
 shuffled_stim = shuffle_stim(wp)

 # add features
 stim_features = add_features(shuffled_stim)

 # go from df to egg
 egg = df2egg(stim_features)

 return egg

create the stim list
egg = loadstim()
egg.dist_funcs

Out[4]:

{'category': <function quail.helpers.<lambda>>,
 'color': <function quail.helpers.<lambda>>,
 'first_letter': <function quail.helpers.<lambda>>,
 'length': <function quail.helpers.<lambda>>,
 'pos': <function quail.helpers.<lambda>>,
 'size': <function quail.helpers.<lambda>>}

In [14]:

%%timeit

egg1 = egg.crack(lists=[0], subjects=[0])
egg2 = egg.crack(lists=[1], subjects=[0])

initialize fingerprint
fingerprint = Fingerprint(init=egg1)

initialize presenter
params = {
 'fingerprint' : fingerprint
}
presenter = OptimalPresenter(params=params, strategy='stabilize')

update the fingerprint
fingerprint.update(egg1, permute=True, parallel=True)

reshape weights
weights = fingerprint.state.reshape(1,6)

reorder next list using permutation
resorted_egg = presenter.order(egg2, method='permute', nperms=2500)

1 loop, best of 3: 20.4 s per loop

In [4]:

nperms=100
dist_stick = []
dist_beststick = []
dist_perm = []
dist_permde = []
dist_rand = []
dist_bestchoice = []

for iperm in range(nperms):

 # generate a list from the word pool
 lst1 = generate_lst(wp)

 # simulate an egg
 egg1 = simulate_egg(lst1)

 # initialize fingerprint
 fingerprint = Fingerprint(init=egg1)

 # initialize presenter
 params = {
 'fingerprint' : fingerprint
 }
 presenter = OptimalPresenter(params=params, strategy='stabilize')

 # update the fingerprint
 fingerprint.update(egg1, permute=True, parallel=True)

 # reshape weights
 weights = fingerprint.state.reshape(1,7)

 # generate another list from the word pool
 lst2 = generate_lst(wp)

 # simulate egg 2
 egg2 = simulate_egg(lst2)

 weights_rand = quail.analyze(egg2, analysis='fingerprint', permute=True, parallel=True)
 dist_rand.append(cdist(weights_rand, weights, 'correlation')[0])

 # reorder next list using stick breaking
 resorted_egg = presenter.order(egg2, method='stick')
 weights_stick = quail.analyze(resorted_egg, analysis='fingerprint', permute=True, parallel=True)
 dist_stick.append(cdist(weights_stick, weights, 'correlation')[0])

 # reorder next list using stick breaking
 resorted_egg = presenter.order(egg2, method='best_stick', nperms=nperms)
 weights_stick = quail.analyze(resorted_egg, analysis='fingerprint', permute=True, parallel=True)
 dist_beststick.append(cdist(weights_stick, weights, 'correlation')[0])

 # reorder next list using permutation
 resorted_egg = presenter.order(egg2, method='permute', nperms=nperms)
 weights_perm = quail.analyze(resorted_egg, analysis='fingerprint', permute=True, parallel=True)
 dist_perm.append(cdist(weights_perm, weights, 'correlation'))

 presenter.strategy = 'destabilize'

 # reorder next list using permutation
 resorted_egg = presenter.order(egg2, method='permute', nperms=nperms)
 weights_permde = quail.analyze(resorted_egg, analysis='fingerprint', permute=True, parallel=True)
 dist_permde.append(cdist(weights_permde, weights, 'correlation'))

 if iperm % 10 == 0:
 print(iperm)

/Users/andyheusser/Documents/github/quail/quail/analysis.py:105: UserWarning: Pandas doesn't allow columns to be created via a new attribute name - see https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute-access
 'list_length' : data.list_length

0
10

Process PoolWorker-4:
Process PoolWorker-2:
Process PoolWorker-3:
Process PoolWorker-1:
Traceback (most recent call last):
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/pool.py", line 102, in worker
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/process.py", line 258, in _bootstrap
Traceback (most recent call last):
Traceback (most recent call last):
Traceback (most recent call last):
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/process.py", line 258, in _bootstrap
 self.run()
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/process.py", line 258, in _bootstrap
 self.run()
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/process.py", line 258, in _bootstrap
 self.run()
 self.run()
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/process.py", line 114, in run
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/process.py", line 114, in run
 self._target(*self._args, **self._kwargs)
 self._target(*self._args, **self._kwargs)
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/process.py", line 114, in run
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/process.py", line 114, in run
 self._target(*self._args, **self._kwargs)
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/pool.py", line 102, in worker
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/pool.py", line 102, in worker
 self._target(*self._args, **self._kwargs)
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/pool.py", line 102, in worker
 task = get()
 task = get()
 task = get()
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/queues.py", line 379, in get
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/queues.py", line 379, in get
 task = get()
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/queues.py", line 379, in get
 racquire()
 racquire()
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/queues.py", line 381, in get
KeyboardInterrupt
 racquire()
 return recv()
KeyboardInterrupt
KeyboardInterrupt
KeyboardInterrupt

KeyboardInterrupt Traceback (most recent call last)
<ipython-input-4-d02dbef354d6> in <module>()
 57
 58 # reorder next list using permutation
---> 59 resorted_egg = presenter.order(egg2, method='permute', nperms=nperms)
 60 weights_permde = quail.analyze(resorted_egg, analysis='fingerprint', permute=True, parallel=True)
 61 dist_permde.append(cdist(weights_permde, weights, 'correlation'))

/Users/andyheusser/Documents/github/quail/quail/fingerprint.py in order(self, egg, method, nperms, strategy, distfun)
 318 return shuffle_egg(egg)
 319 elif method=='permute':
--> 320 return order_perm(self, egg, dist_dict, strategy, nperms, distfun) #
 321 elif method=='stick':
 322 return order_stick(self, egg, dist_dict, strategy) #

/Users/andyheusser/Documents/github/quail/quail/fingerprint.py in order_perm(self, egg, dist_dict, strategy, nperm, distperm)
 242 pres_len = len(pres)
 243
--> 244 results = Parallel(n_jobs=multiprocessing.cpu_count())(
 245 delayed(rand_perm)(pres, features, dist_dict, dist_funcs) for i in range(nperms))
 246

/Applications/Canopy.app/appdata/canopy-1.7.4.3348.macosx-x86_64/Canopy.app/Contents/lib/python2.7/multiprocessing/__init__.pyc in cpu_count()
 122 try:
 123 with os.popen(comm) as p:
--> 124 num = int(p.read())
 125 except ValueError:
 126 num = 0

KeyboardInterrupt:

Process PoolWorker-7:
Process PoolWorker-5:
Process PoolWorker-8:
Process PoolWorker-6:
Traceback (most recent call last):
Traceback (most recent call last):
Traceback (most recent call last):
Traceback (most recent call last):
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/process.py", line 258, in _bootstrap
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/process.py", line 258, in _bootstrap
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/process.py", line 258, in _bootstrap
 self.run()
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/process.py", line 258, in _bootstrap
 self.run()
 self.run()
 self.run()
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/process.py", line 114, in run
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/process.py", line 114, in run
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/process.py", line 114, in run
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/process.py", line 114, in run
 self._target(*self._args, **self._kwargs)
 self._target(*self._args, **self._kwargs)
 self._target(*self._args, **self._kwargs)
 self._target(*self._args, **self._kwargs)
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/pool.py", line 102, in worker
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/pool.py", line 102, in worker
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/pool.py", line 102, in worker
 task = get()
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/pool.py", line 102, in worker
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/queues.py", line 381, in get
 return recv()
 task = get()
 task = get()
KeyboardInterrupt
 task = get()
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/queues.py", line 379, in get
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/queues.py", line 379, in get
 racquire()
 File "/Users/andyheusser/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/multiprocess/queues.py", line 379, in get
KeyboardInterrupt
 racquire()
 racquire()
KeyboardInterrupt
KeyboardInterrupt

In [67]:

%timeit
shuffled_egg = presenter.order(egg1, strategy='random')
resorted_egg = presenter.order(shuffled_egg, method='permute', nperms=2500)
weights_perm = quail.analyze(resorted_egg, analysis='fingerprint')

KeyError Traceback (most recent call last)
<ipython-input-67-8974ec0814c0> in <module>()
 1 get_ipython().magic(u'timeit')
----> 2 shuffled_egg = presenter.order(egg1, strategy='random')
 3 resorted_egg = presenter.order(shuffled_egg, method='permute', nperms=2500)
 4 weights_perm = quail.analyze(resorted_egg, analysis='fingerprint')

/Users/andyheusser/Documents/github/quail/quail/fingerprint.py in order(self, egg, method, nperms, strategy, distfun)
 322 strategy = self.strategy
 323
--> 324 dist_dict = compute_distances_dict(egg)
 325
 326 if (strategy=='random') or (method=='random'):

/Users/andyheusser/Documents/github/quail/quail/fingerprint.py in compute_distances_dict(egg)
 651 for feature in dist_funcs:
 652
--> 653 distances[item1][item2][feature] = dist_funcs[feature](features_list[idx1][feature],features_list[idx2][feature])
 654
 655 return distances

KeyError: 'CATEGORY'

In [6]:

%matplotlib inline
import matplotlib.pyplot as plt
sns.distplot(1-np.array(dist_stick), label='stick')
sns.distplot(1-np.array(dist_beststick), label='best stick')
sns.distplot(dist_bestchoice, label='best choice')
sns.distplot(1-np.array(dist_perm), label='permute:stabilize')
sns.distplot(1-np.array(dist_permde), label='permute:destabilize')
sns.distplot(1-np.array(dist_rand), label='random')
plt.legend()

Out[6]:

<matplotlib.legend.Legend at 0x10af4ba10>

[image: ../_images/tutorial_optimal_presenter_7_1.png]

In [25]:

def shuffle_stim(wordpool, nlists=16, nwords=16):

 return pd.concat([wp[wp['GROUP']==choice].sample(nwords).reset_index(drop=True) for choice in np.random.choice(wp['GROUP'].unique(), nlists, replace=False)])

def add_features(wp):

 # first letter
 wp['FIRST LETTER'] = wp['WORD'].apply(lambda x: x[0])

 # word length
 wp['WORD LENGTH'] = wp['WORD'].apply(lambda x: len(x))

 # color
 wp['COLOR'] = [[int(np.random.rand() * 255) for i in range(3)] for i in range(wp.shape[0])]

 # location
 wp['LOCATION'] = [[np.random.rand() * 85, np.random.rand() * (100 - wp['WORD LENGTH'].iloc[i] * 3)] for i in range(wp.shape[0])]

 return wp

def df2egg(df):
 group = df['GROUP'].unique()
 pres = [df[df['GROUP']==i]['WORD'].values.tolist() for i in group]
 rec = [[None] for i in group]
 features = [format_features(df[df['GROUP']==i]) for i in group]
 return quail.Egg(pres=[pres], rec=[rec], features=[features])

def format_features(wp):
 trials=[]
 for idx, row in wp.iterrows():
 trial = {
 'length' : row['WORD LENGTH'],
 'size' : row['SIZE'],
 'category' : row['CATEGORY'],
 'pos' : row['LOCATION'],
 'color' : row['COLOR'],
 'first letter' : row['WORD'][0]
 }
 trials.append(trial)
 return trials

load wordpool
wp = pd.read_csv('/Users/andyheusser/Documents/github/quail/quail/data/cut_wordpool.csv')

shuffle the lists and stim
shuffled_stim = shuffle_stim(wp)

add features
stim_features = add_features(shuffled_stim)

egg = df2egg(stim_features)

In [26]:

egg.dist_funcs

Out[26]:

{'CATEGORY': <function quail.helpers.<lambda>>,
 'COLOR': <function quail.helpers.<lambda>>,
 'FIRST LETTER': <function quail.helpers.<lambda>>,
 'GROUP': <function quail.helpers.<lambda>>,
 'LOCATION': <function quail.helpers.<lambda>>,
 'SIZE': <function quail.helpers.<lambda>>,
 'WORD LENGTH': <function quail.helpers.<lambda>>,
 'category': <function quail.helpers.<lambda>>,
 'color': <function quail.helpers.<lambda>>,
 'first letter': <function quail.helpers.<lambda>>,
 'length': <function quail.helpers.<lambda>>,
 'pos': <function quail.helpers.<lambda>>,
 'size': <function quail.helpers.<lambda>>}

In [6]:

generate a list from the word pool
lst1 = generate_lst(wp)

simulate an egg
egg = simulate_egg(lst1)

In []:

def format_stim(wp):
trials=[]
for idx, row in wp.iterrows():
trial = {
'type' : 'p',
'text' : row['WORD'],
'length' : row['WORD LENGTH'],
'size' : row['SIZE'],
'category' : row['CATEGORY'],
'listid' : row['GROUP'],
'pos' : row['LOCATION'],
'rgb' : row['COLOR'],
}
trials.append(trial)
return trials

 The Egg data object

The Egg data object

This tutorial will go over the basics of the Egg data object, the
essential quail data structure that contains all the data you need
to run analyses and plot the results. An egg is made up of two primary
pieces of data:

	pres data - stimuli/features that were presented to a subject

	rec data - stimuli/features that were recalled by the subject.

You cannot create an egg without both of these components.
Additionally, there are a few optional fields:

	dist_funcs dictionary - this field allows you to control the
distance functions for each of the stimulus features. For more on
this, see the fingerprint tutorial.

	meta dictionary - this is an optional field that allows you to
store custom meta data about the dataset, such as the date collected,
experiment version etc.

There are also a few other fields and functions to make organizing and
modifying eggs easier (discussed at the bottom). Now, lets dive in
and create an egg from scratch.

Load in the library

import quail
%matplotlib inline

/usr/local/lib/python3.6/site-packages/pydub/utils.py:165: RuntimeWarning: Couldn't find ffmpeg or avconv - defaulting to ffmpeg, but may not work
 warn("Couldn't find ffmpeg or avconv - defaulting to ffmpeg, but may not work", RuntimeWarning)

The pres data structure

The first piece of an egg is the pres data, or in other words
the stimuli that were presented to the subject. For a single subject’s
data, the form of the input will be a list of lists, where each list is
comprised of the words presented to the subject during a particular
study block. Let’s create a fake dataset of one subject who saw two
encoding lists:

presented_words = [['cat', 'bat', 'hat', 'goat'],['zoo', 'animal', 'zebra', 'horse']]

The rec data structure

The second fundamental component of an egg is the rec data, or the
words/stimuli that were recalled by the subject. Now, let’s create the
recall lists:

recalled_words = [['bat', 'cat', 'goat', 'hat'],['animal', 'horse', 'zoo']]

We now have the two components necessary to build an egg, so let’s
do that and then take a look at the result.

egg = quail.Egg(pres=presented_words, rec=recalled_words)

That’s it! We’ve created our first egg. Let’s take a closer look at
how the egg is setup. We can use the info method to get a quick
snapshot of the egg:

egg.info()

Number of subjects: 1
Number of lists per subject: 2
Number of words per list: 4
Date created: Mon Aug 6 14:43:19 2018
Meta data: {}

Now, let’s take a closer look at how the egg is structured. First,
we will check out the pres field:

egg.get_pres_items()

 Automated Speech Decoding

Automated Speech Decoding

In a typical free recall experiment, after the experiment completes the
experimenter (or a team of experience-hungry undergraduates) will
manually transcribe the verbal responses from a subject by listening to
audio files, and coding each word. This process can take hours, and is
typically not exciting, to say the least. To help with this problem, we
created a decode_speech function, which wraps the Google Speech API
and a software package called ffmpeg to automatically transcribe the
responses. Furthermore, it allows the experimenter to transcribe in
(almost) realtime, which makes adaptive free recall experiments a
possibility. To use this feature (assuming that you are using a mac or
linux machine), you must first set up ffmpeg and Google Speech API:

Setting up ffmpeg

ffmpeg is native application that processes audio and video files.
We will use it to convert .wav files to the .flac format, which will
allow us to send the files to Google Speech. To set up:

On a mac:

	Make sure you have brew installed. If you don’t, paste this into your
terminal window:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

	Install ffmpeg

brew install ffmpeg

Setting up the Google Speech API

Under the hood, quail uses the Google Speech API to transcribe audio
responses. Follow the instructions below to set it up. Note: the API is
not free, but its quite reasonable. Up to 60 minutes/month is free, and
after that it costs $0.006 per 15 seconds. For a typical study (16
study/test blocks) allowing for a minute of recall after each, the price
comes out to ~$0.38 per subject. To set it up, follow these steps:

	Sign up for a Google Cloud account.
	https://cloud.google.com/ (you will need to enter a credit card
number)

	Create a project.
	Click “Select a project”, and create a new one. You can have a
single project for all recall studies, or a separate project for
each study. Then, navigate to your new project.

	Enable to Speech API.
	Click the “Dashboard” icon.

	Click “Enable API”

	Click “Speech API” which will be listed under “Google Cloud
Machine Learning”.

	Click “Enable”.

	Set up a service account.
	Click “Credentials”.

	Click “Create credentials” and select “Service account key”.

	Click “Service account” and select “new service account”.

	Name the account (“owner”) and then select the role
“Project->Owner”.

	Click “Create”.

If you followed these steps, a JSON formatted API keyfile will be
downloaded to your local computer. This file is your ticket to speech
decoding, so keep it safe. Everything should now be setup! Below is a
basic example of how to use it:

#import
import quail

decode speech
recall_data = quail.decode_speech('../data/sample.wav', keypath='path/to/keyfile.JSON')

print results
print(recall_data)

Super-user tip:

The credentials can also be set up as an environmental variable. To do
this, edit your .bash_profile, adding the line:

export GOOGLE_APPLICATION_CREDENTIALS='/path/to/keyfile.JSON'

You’ll need to launch a fresh terminal instance and then the
decode_speech function should work without the explicit keypath:

decode speech
recall_data = quail.decode_speech('../data/sample.wav')

 Advanced plotting

Advanced plotting

This tutorial will go over more advanced plotting functionality. Before
reading this, you should take a look at the basic analysis and plotting
tutorial. First, we’ll load in some example data. This dataset is an
egg comprised of 30 subjects, who each performed 8 study/test blocks
of 16 words each.

import quail
%matplotlib inline
egg = quail.load_example_data()

/usr/local/lib/python3.6/site-packages/pydub/utils.py:165: RuntimeWarning: Couldn't find ffmpeg or avconv - defaulting to ffmpeg, but may not work
 warn("Couldn't find ffmpeg or avconv - defaulting to ffmpeg, but may not work", RuntimeWarning)

Accuracy

accuracy = egg.analyze('accuracy')
accuracy.get_data().head()

 Analyzing naturalistic stimuli

Analyzing naturalistic stimuli

In traditional list-learning free recall experiments, remembering is
often cast as a binary operation: either an item is recalled or it
isn’t. This allows for a straight forward matching between the presented
and recalled stimuli. However, characterizing and evaluating memory in
more realistic contexts (e.g., telling a story to a friend about a
recent vacation) is much more nuanced. Real-world recall is continuous,
rather than binary. Further, the specific words used to describe an
experience may vary considerably across participants. To handle this new
data regime, we extended classic methods developed for free-recall
list-learning experiments to accomodate naturalistic stimuli.
Specifically, we provide a more flexible ‘matching function’, which
quantifies the similarity between stimuli and verbal responses in a
continuous manner.

In the tutorial below, we will describe our new analysis approach and
demonstrate how to perform the analyses using quail. To get started,
let’s load in the example data:

In [1]:

import quail
import numpy as np
import seaborn as sns
from scipy.spatial.distance import cdist

%matplotlib inline
egg = quail.load_example_data(dataset='naturalistic')

The example data used in this tutorial is based on an open dataset from
Chen et al., 2017, in which 17 participants viewed and then verbally
recounted an episode of the BBC series Sherlock. We fit a topic model
to hand-annotated text descriptions of the episode and used the model to
transform the video annotations and the recall transcriptions for each
subject. We then used a Hidden Markov Model to segment the video and
recall models into an (optimal) number of events. The result was a
matrix of topic vectors representing the “events” in the video and list
of matrices of topic vectors representing participant’s recall “events”.
We created an egg from these vector representations of the stimulus
and verbal recall, where the topic vectors were passed to quail as a
stimulus features. Let’s take a closer look at the egg:

In [2]:

egg.info()

Number of subjects: 17
Number of lists per subject: 1
Number of words per list: 34
Date created: Wed Aug 15 11:35:35 2018
Meta data: {}

Here, the egg’s pres field consists of 34 stimulus events (the
number of video segments determined by our HMM). Each stimulus event is
represented by a dictionary containing the label of the video segment
(item) and a topic vector representing that event (topics).

In [3]:

The label of each stimulus event...
egg.get_pres_items().head()

Out[3]:

 Basic analyzing and plotting

Basic analyzing and plotting

This tutorial will go over the basics of analyzing eggs, the primary
data structure used in quail. To learn about how an egg is set up,
see the egg tutorial.

An egg is made up of (at minimum) the stimuli presented to a subject and
the stimuli recalled by the subject. With these, two components we can
perform a number of analyses:

	Recall Accuracy - the proportion of stimuli presented that were
later recalled

	Serial Position Curve - recall accuracy as a function of the
encoding position of the stimulus

	Probability of First Recall - the probability that a stimulus
will be recalled first as a function of its encoding position

	Lag-CRP - given the recall of word n, the probability of
recalling stimuli at neighboring positions (n+/-1, 2, 3 etc).

	Temporal Clustering - a measure of recall clustering by temporal
proximity during encoding

If we have a set of features for the stimuli, we can also compute a
Memory Fingerprint, which is an estimate of how a subject clusters
their recall responses with respect to features of a stimulus (see the
fingerprint tutorial for more on this).

Let’s get to analyzing some eggs. First, we’ll load in some example
data:

import quail
%matplotlib inline

egg = quail.load_example_data()

/usr/local/lib/python3.6/site-packages/pydub/utils.py:165: RuntimeWarning: Couldn't find ffmpeg or avconv - defaulting to ffmpeg, but may not work
 warn("Couldn't find ffmpeg or avconv - defaulting to ffmpeg, but may not work", RuntimeWarning)

This dataset is comprised of 30 subjects, who each performed 8
study/test blocks of 16 words each. Here are some of the presented
words:

egg.get_pres_items().head()

 Analyzing naturalistic stimuli

Analyzing naturalistic stimuli

In traditional list-learning free recall experiments, remembering is
often cast as a binary operation: either an item is recalled or it
isn’t. This allows for a straight forward matching between the presented
and recalled stimuli. However, characterizing and evaluating memory in
more realistic contexts (e.g., telling a story to a friend about a
recent vacation) is much more nuanced. Real-world recall is continuous,
rather than binary. Further, the specific words used to describe an
experience may vary considerably across participants. To handle this new
data regime, we extended classic methods developed for free-recall
li